# !pip install --upgrade cityseer
Cityseer Examples
This repository contains examples for the cityseer-api
package.
Use the navigation menu to explore examples.
Getting Started
cityseer
is a python
package that can be installed with pip
:
The guide and examples are based on cityseer>=4.17.1
.
cityseer
revolves around networks (graphs). If you’re comfortable with numpy
and abstract data handling, then the underlying data structures can be created and manipulated directly. However, it is generally more convenient to sketch the graph using NetworkX
and to let cityseer
take care of initialising and converting the graph for you.
# any networkX MultiGraph with 'x' and 'y' node attributes will do
# here we'll use the cityseer mock module to generate an example networkX graph
import networkx as nx
from cityseer.tools import mock, graphs, plot, io
= mock.mock_graph()
G print(G)
# let's plot the network
=True, node_size=80, dpi=200, figsize=(4, 4)) plot.plot_nx(G, labels
INFO:cityseer.tools.plot:Preparing graph nodes
INFO:cityseer.tools.plot:Preparing graph edges
MultiGraph with 57 nodes and 79 edges
0%| | 0/79 [00:00<?, ?it/s]100%|██████████| 79/79 [00:00<00:00, 452046.41it/s]
Graph Preparation
The tools.graphs
module contains a collection of convenience functions for the preparation and conversion of networkX
MultiGraphs
, i.e. undirected graphs allowing for parallel edges. The tools.graphs
module is designed to work with raw shapely
Linestring
geometries that have been assigned to the graph’s edge (link) geom
attributes. The benefit to this approach is that the geometry of the network is decoupled from the topology: the topology is consequently free from distortions which would otherwise confound centrality and other metrics.
There are generally two scenarios when creating a street network graph:
In the ideal case, if you have access to a high-quality street network dataset – which keeps the topology of the network separate from the geometry of the streets – then you would construct the network based on the topology while assigning the roadway geometries to the respective edges spanning the nodes. OS Open Roads is a good example of this type of dataset. Assigning the geometries to an edge involves A - casting the geometry to a
shapely
LineString
, and B - assigning this geometry to the respective edge by adding theLineString
geometry as ageom
attribute. e.g.G.add_edge(start_node, end_node, geom=a_linestring_geom)
.In reality, most data-sources are not this refined and will represent roadway geometries by adding additional nodes to the network. For a variety of reasons, this is not ideal and you may want to follow the
Graph Cleaning
orGraph Corrections
guides.
Here, we’ll walk through a high-level overview showing how to use cityseer
. You can provide your own shapely geometries if available; else, you can auto-infer simple geometries from the start to end node of each network edge, which works well for graphs where nodes have been used to inscribe roadway geometries (i.e. OSM).
# use nx_simple_geoms to infer geoms for your edges
= graphs.nx_simple_geoms(G)
G =True, node_size=80, plot_geoms=True, dpi=200, figsize=(4, 4)) plot.plot_nx(G, labels
INFO:cityseer.tools.graphs:Generating interpolated edge geometries.
0%| | 0/79 [00:00<?, ?it/s]100%|██████████| 79/79 [00:00<00:00, 41538.17it/s]
INFO:cityseer.tools.plot:Preparing graph nodes
INFO:cityseer.tools.plot:Preparing graph edges
0%| | 0/79 [00:00<?, ?it/s]100%|██████████| 79/79 [00:00<00:00, 27610.20it/s]
We have now inferred geometries for each edge, meaning that each edge now has an associated LineString
geometry. Any further manipulation of the graph using the cityseer.graph
module will retain and further manipulate these geometries in-place.
Once the geoms are readied, we can use tools such as nx_decompose
for generating granular graph representations and nx_to_dual
for casting a primal graph representation to its dual.
# this will (optionally) decompose the graph
= graphs.nx_decompose(G, 50)
G_decomp =True, labels=False, dpi=200, figsize=(4, 4)) plot.plot_nx(G_decomp, plot_geoms
INFO:cityseer.tools.graphs:Decomposing graph to maximum edge lengths of 50.
0%| | 0/79 [00:00<?, ?it/s]100%|██████████| 79/79 [00:00<00:00, 1905.91it/s]
INFO:cityseer.tools.plot:Preparing graph nodes
INFO:cityseer.tools.plot:Preparing graph edges
0%| | 0/316 [00:00<?, ?it/s]100%|██████████| 316/316 [00:00<00:00, 36629.45it/s]
# this will (optionally) cast to a dual network
= graphs.nx_to_dual(G)
G_dual # here we are plotting the newly decomposed graph (blue) against the original graph (red)
=False, dpi=200, figsize=(4, 4)) plot.plot_nx_primal_or_dual(G, G_dual, plot_geoms
INFO:cityseer.tools.graphs:Converting graph to dual.
INFO:cityseer.tools.graphs:Preparing dual nodes
0%| | 0/79 [00:00<?, ?it/s]100%|██████████| 79/79 [00:00<00:00, 15062.73it/s]
INFO:cityseer.tools.graphs:Preparing dual edges (splitting and welding geoms)
0%| | 0/79 [00:00<?, ?it/s]100%|██████████| 79/79 [00:00<00:00, 876.50it/s]
INFO:cityseer.tools.plot:Preparing graph nodes
INFO:cityseer.tools.plot:Preparing graph edges
0%| | 0/79 [00:00<?, ?it/s]100%|██████████| 79/79 [00:00<00:00, 382621.27it/s]
INFO:cityseer.tools.plot:Preparing graph nodes
INFO:cityseer.tools.plot:Preparing graph edges
0%| | 0/155 [00:00<?, ?it/s]100%|██████████| 155/155 [00:00<00:00, 604198.07it/s]
Metrics
After graph preparation and cleaning has been completed, the networkX
graph can be transformed into data structures for efficiently computing centralities, land-use measures, or statistical aggregations.
Use network_structure_from_nx to convert a networkX
graph into a GeoPandas GeoDataFrame
and a rustalgos.NetworkStructure
, which is used by Cityseer for efficiently computing over the network.
Network Centralities
The networks.node_centrality_shortest
, networks.node_centrality_simplest
, and networks.segment_centrality
methods wrap underlying rust functions that compute the centrality methods. All selected measures and distance thresholds are computed simultaneously to reduce the amount of time required for multi-variable and multi-scalar workflows. The results of the computations will be written to the GeoDataFrame
.
from cityseer.metrics import networks
# create a Network layer from the networkX graph
# use a CRS EPSG code matching the projected coordinate reference system for your data
= io.network_structure_from_nx(
nodes_gdf, edges_gdf, network_structure =3395
G_decomp, crs
)# the underlying method allows the computation of various centralities simultaneously, e.g.
= networks.segment_centrality(
nodes_gdf =network_structure, # the network structure for which to compute the measures
network_structure=nodes_gdf, # the nodes GeoDataFrame, to which the results will be written
nodes_gdf=[
distances200,
400,
800,
1600,
# the distance thresholds for which to compute centralities
],
)# the results are now in the GeoDataFrame nodes_gdf.head()
INFO:cityseer.tools.io:Preparing node and edge arrays from networkX graph.
0%| | 0/294 [00:00<?, ?it/s]100%|██████████| 294/294 [00:00<00:00, 92120.53it/s]
0%| | 0/294 [00:00<?, ?it/s]100%|██████████| 294/294 [00:00<00:00, 8177.39it/s]
INFO:cityseer.metrics.networks:Computing shortest path segment centrality.
0%| | 0/294 [00:00<?, ?it/s]100%|██████████| 294/294 [00:01<00:00, 293.86it/s]100%|██████████| 294/294 [00:01<00:00, 293.64it/s]
ns_node_idx | x | y | live | weight | geom | cc_seg_density_200 | cc_seg_density_400 | cc_seg_density_800 | cc_seg_density_1600 | ... | cc_seg_harmonic_800 | cc_seg_harmonic_1600 | cc_seg_beta_200 | cc_seg_beta_400 | cc_seg_beta_800 | cc_seg_beta_1600 | cc_seg_betweenness_200 | cc_seg_betweenness_400 | cc_seg_betweenness_800 | cc_seg_betweenness_1600 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 700700.0 | 5719700.0 | True | 1 | POINT (700700 5719700) | 857.327026 | 3042.260254 | 10088.987305 | 13137.789062 | ... | 36.822689 | 40.173214 | 159.837616 | 421.984436 | 1365.011597 | 3582.891113 | 590.866028 | 2805.018311 | 23575.023438 | 159337.734375 |
1 | 1 | 700610.0 | 5719780.0 | True | 1 | POINT (700610 5719780) | 784.184753 | 2527.174805 | 9059.986328 | 13137.791992 | ... | 34.135193 | 38.450062 | 154.743927 | 388.553589 | 1221.976562 | 3301.651611 | 534.708435 | 2270.786865 | 15957.037109 | 103352.703125 |
2 | 2 | 700460.0 | 5719700.0 | True | 1 | POINT (700460 5719700) | 695.835876 | 2062.288330 | 6928.821289 | 13137.790039 | ... | 29.375729 | 35.568359 | 150.506683 | 353.928864 | 999.668030 | 2788.973877 | 484.306824 | 1700.836914 | 7541.832520 | 36259.574219 |
3 | 3 | 700520.0 | 5719820.0 | True | 1 | POINT (700520 5719820) | 817.972900 | 2366.633057 | 5945.978027 | 13137.791992 | ... | 28.526949 | 35.446590 | 156.397873 | 392.560852 | 1018.365723 | 2680.288574 | 538.021912 | 2131.172119 | 7549.368652 | 24907.980469 |
4 | 4 | 700620.0 | 5719905.0 | True | 1 | POINT (700620 5719905) | 812.112549 | 2419.865234 | 7675.241699 | 13137.791992 | ... | 31.385777 | 36.887234 | 155.821732 | 388.663147 | 1108.671631 | 2981.365723 | 528.050293 | 2153.490479 | 11441.320312 | 66363.148438 |
5 rows × 22 columns
# plot centrality
from matplotlib import colors
# custom colourmap
= colors.LinearSegmentedColormap.from_list("cityseer", ["#64c1ff", "#d32f2f"])
cmap # normalise the values
= nodes_gdf["cc_seg_harmonic_800"]
segment_harmonic_vals = colors.Normalize()(segment_harmonic_vals)
segment_harmonic_vals # cast against the colour map
= cmap(segment_harmonic_vals)
segment_harmonic_cols # plot segment_harmonic
# cityseer's plot methods are used here and in tests for convenience
# that said, rather use plotting methods directly from networkX or GeoPandas where possible
plot.plot_nx(=False, node_colour=segment_harmonic_cols, dpi=200, figsize=(4, 4)
G_decomp, labels )
INFO:cityseer.tools.plot:Preparing graph nodes
INFO:cityseer.tools.plot:Preparing graph edges
0%| | 0/316 [00:00<?, ?it/s]100%|██████████| 316/316 [00:00<00:00, 286201.70it/s]
Land-use and statistical measures
Landuse and statistical measures require a GeoPandas GeoDataFrame
consisting of Point
geometries. Columns representing categorical landuse information (“pub”, “shop”, “school”) can be passed to landuse methods, whereas columns representing numerical information can be used for statistical methods.
When computing these measures, cityseer
will assign each data point to the two closest network nodes — one in either direction — based on the closest adjacent street edge. This enables cityseer
to use dynamic spatial aggregation methods that more accurately describe distances from the perspective of pedestrians travelling over the network, and relative to the direction of approach.
layers.compute_landuses
and layers.compute_mixed_uses
methods are used for the calculation of land-use accessibility and mixed-use measures whereas layers.compute_stats
can be used for statistical aggregations. As with the centrality methods, the measures are computed over the network and are computed simultaneously for all measures and distances.
from cityseer.metrics import layers
# a mock data dictionary representing categorical landuse data
# here randomly generated letters represent fictitious landuse categories
= mock.mock_landuse_categorical_data(G_decomp, random_seed=25)
data_gdf data_gdf.head()
geometry | data_id | categorical_landuses | |
---|---|---|---|
uid | |||
0 | POINT (701144.149 5719228.311) | 0 | h |
1 | POINT (700798.732 5719938.464) | 1 | f |
2 | POINT (700434.607 5719165.951) | 2 | h |
3 | POINT (700323.093 5719450.769) | 3 | a |
4 | POINT (700593.32 5719841.434) | 4 | h |
# example easy-wrapper method for computing mixed-uses
# this is a distance weighted form of hill diversity
= layers.compute_mixed_uses(
nodes_gdf, data_gdf # the source data
data_gdf, ="categorical_landuses", # column in the dataframe which contains the landuse labels
landuse_column_label=nodes_gdf, # nodes GeoDataFrame - the results are written here
nodes_gdf=network_structure, # measures will be computed relative to pedestrian distances over the network
network_structure=[
distances200,
400,
800,
1600,
# distance thresholds for which you want to compute the measures
],
)print(
nodes_gdf.columns# the GeoDataFrame will contain the results of the calculations
) print(nodes_gdf["cc_hill_q0_800_nw"]) # which can be retrieved as needed
INFO:cityseer.metrics.layers:Computing mixed-use measures.
0%| | 0/294 [00:00<?, ?it/s]100%|██████████| 294/294 [00:01<00:00, 293.92it/s]100%|██████████| 294/294 [00:01<00:00, 293.69it/s]
Index(['ns_node_idx', 'x', 'y', 'live', 'weight', 'geom', 'cc_seg_density_200',
'cc_seg_density_400', 'cc_seg_density_800', 'cc_seg_density_1600',
'cc_seg_harmonic_200', 'cc_seg_harmonic_400', 'cc_seg_harmonic_800',
'cc_seg_harmonic_1600', 'cc_seg_beta_200', 'cc_seg_beta_400',
'cc_seg_beta_800', 'cc_seg_beta_1600', 'cc_seg_betweenness_200',
'cc_seg_betweenness_400', 'cc_seg_betweenness_800',
'cc_seg_betweenness_1600', 'cc_hill_q0_200_nw', 'cc_hill_q0_200_wt',
'cc_hill_q1_200_nw', 'cc_hill_q1_200_wt', 'cc_hill_q2_200_nw',
'cc_hill_q2_200_wt', 'cc_hill_q0_400_nw', 'cc_hill_q0_400_wt',
'cc_hill_q1_400_nw', 'cc_hill_q1_400_wt', 'cc_hill_q2_400_nw',
'cc_hill_q2_400_wt', 'cc_hill_q0_800_nw', 'cc_hill_q0_800_wt',
'cc_hill_q1_800_nw', 'cc_hill_q1_800_wt', 'cc_hill_q2_800_nw',
'cc_hill_q2_800_wt', 'cc_hill_q0_1600_nw', 'cc_hill_q0_1600_wt',
'cc_hill_q1_1600_nw', 'cc_hill_q1_1600_wt', 'cc_hill_q2_1600_nw',
'cc_hill_q2_1600_wt'],
dtype='object')
0 9.0
1 9.0
2 9.0
3 9.0
4 9.0
...
53±0±54 2.0
53±1±54 2.0
53±2±54 2.0
54±0±55 2.0
54±1±55 2.0
Name: cc_hill_q0_800_nw, Length: 294, dtype: float32
# for curiosity's sake - plot the assignments to see which edges the data points were assigned to
=200, figsize=(4, 4)) plot.plot_assignment(network_structure, G_decomp, data_gdf, dpi
/home/runner/work/cityseer-examples/cityseer-examples/.venv/lib/python3.13/site-packages/cityseer/tools/plot.py:543: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
plt.tight_layout()
# plot distance-weighted hill mixed uses
= nodes_gdf["cc_hill_q0_800_wt"]
mixed_uses_vals = colors.Normalize()(mixed_uses_vals)
mixed_uses_vals = cmap(mixed_uses_vals)
mixed_uses_cols
plot.plot_assignment(
network_structure,
G_decomp,
data_gdf,=mixed_uses_cols,
node_colour=data_gdf["categorical_landuses"].values,
data_labels=200,
dpi=(4, 4),
figsize )
/home/runner/work/cityseer-examples/cityseer-examples/.venv/lib/python3.13/site-packages/cityseer/tools/plot.py:543: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
plt.tight_layout()
# compute landuse accessibilities for land-use types a, b, c
= layers.compute_accessibilities(
nodes_gdf, data_gdf # the source data
data_gdf, ="categorical_landuses", # column in the dataframe which contains the landuse labels
landuse_column_label=[
accessibility_keys"a",
"b",
"c",
# the landuse categories for which to compute accessibilities
], =nodes_gdf, # nodes GeoDataFrame - the results are written here
nodes_gdf=network_structure, # measures will be computed relative to pedestrian distances over the network
network_structure=[
distances200,
400,
800,
1600,
# distance thresholds for which you want to compute the measures
],
)# accessibilities are computed in both weighted and unweighted forms, e.g. for "a" and "b" landuse codes
print(
"cc_a_800_wt", "cc_b_1600_nw"]]
nodes_gdf[[# and can be retrieved as needed )
INFO:cityseer.metrics.layers:Computing land-use accessibility for: a, b, c
0%| | 0/294 [00:00<?, ?it/s]100%|██████████| 294/294 [00:01<00:00, 293.04it/s]100%|██████████| 294/294 [00:01<00:00, 292.79it/s]
cc_a_800_wt cc_b_1600_nw
0 0.316222 2.0
1 0.173186 2.0
2 0.074022 2.0
3 0.047997 2.0
4 0.092515 2.0
... ... ...
53±0±54 0.000000 0.0
53±1±54 0.000000 0.0
53±2±54 0.000000 0.0
54±0±55 0.000000 0.0
54±1±55 0.000000 0.0
[294 rows x 2 columns]
Aggregations can likewise be computed for numerical data. Let’s generate some mock numerical data:
= mock.mock_numerical_data(G_decomp, num_arrs=3)
numerical_data_gdf
numerical_data_gdf.head()# compute stats for column mock_numerical_1
= layers.compute_stats(
nodes_gdf, numerical_data_gdf # the source data
numerical_data_gdf, ="mock_numerical_1", # numerical column to compute stats for
stats_column_label=nodes_gdf, # nodes GeoDataFrame - the results are written here
nodes_gdf=network_structure, # measures will be computed relative to pedestrian distances over the network
network_structure=[
distances800,
1600,
# distance thresholds for which you want to compute the measures
],
)# statistical aggregations are calculated for each requested column, and in the following forms:
# max, min, sum, sum_weighted, mean, mean_weighted, variance, variance_weighted
print(nodes_gdf["cc_mock_numerical_1_max_800"])
print(nodes_gdf["cc_mock_numerical_1_mean_800_wt"])
INFO:cityseer.metrics.layers:Computing statistics.
0%| | 0/294 [00:00<?, ?it/s]100%|██████████| 294/294 [00:01<00:00, 292.96it/s]100%|██████████| 294/294 [00:01<00:00, 292.73it/s]
0 99.438004
1 99.438004
2 99.438004
3 90.749001
4 99.438004
...
53±0±54 1.913000
53±1±54 1.913000
53±2±54 1.913000
54±0±55 1.913000
54±1±55 1.913000
Name: cc_mock_numerical_1_max_800, Length: 294, dtype: float32
0 51.426266
1 53.213055
2 51.837536
3 49.952995
4 53.090736
...
53±0±54 1.913000
53±1±54 1.913000
53±2±54 1.913000
54±0±55 1.913000
54±1±55 1.913000
Name: cc_mock_numerical_1_mean_800_wt, Length: 294, dtype: float32
The landuse metrics and statistical aggregations are computed over the street network relative to the network, with results written to each node. The mixed-use, accessibility, and statistical aggregations can therefore be compared directly to centrality computations from the same locations, and can be correlated or otherwise compared.
Data derived from metrics can be converted back into a NetworkX
graph using the nx_from_cityseer_geopandas method.
= io.nx_from_cityseer_geopandas(
nx_multigraph_round_trip
nodes_gdf,
edges_gdf,
)"0"] nx_multigraph_round_trip.nodes[
INFO:cityseer.tools.io:Populating node and edge map data to a networkX graph.
INFO:cityseer.tools.io:Unpacking node data.
0it [00:00, ?it/s]294it [00:00, 14179.72it/s]
INFO:cityseer.tools.io:Unpacking edge data.
0it [00:00, ?it/s]632it [00:00, 15893.80it/s]
INFO:cityseer.tools.io:Unpacking metrics to nodes.
0it [00:00, ?it/s]294it [00:00, 24385.97it/s]
0it [00:00, ?it/s]294it [00:00, 21628.47it/s]
0it [00:00, ?it/s]294it [00:00, 21801.30it/s]
0it [00:00, ?it/s]294it [00:00, 24157.61it/s]
0it [00:00, ?it/s]294it [00:00, 23255.11it/s]
0it [00:00, ?it/s]294it [00:00, 23528.44it/s]
0it [00:00, ?it/s]294it [00:00, 21453.12it/s]
0it [00:00, ?it/s]294it [00:00, 21865.09it/s]
0it [00:00, ?it/s]294it [00:00, 21271.05it/s]
0it [00:00, ?it/s]294it [00:00, 22743.00it/s]
0it [00:00, ?it/s]294it [00:00, 22624.08it/s]
0it [00:00, ?it/s]294it [00:00, 22911.60it/s]
0it [00:00, ?it/s]294it [00:00, 23944.65it/s]
0it [00:00, ?it/s]294it [00:00, 21768.59it/s]
0it [00:00, ?it/s]294it [00:00, 22004.77it/s]
0it [00:00, ?it/s]294it [00:00, 22216.47it/s]
0it [00:00, ?it/s]294it [00:00, 21376.14it/s]
0it [00:00, ?it/s]294it [00:00, 21608.76it/s]
0it [00:00, ?it/s]294it [00:00, 22100.21it/s]
0it [00:00, ?it/s]294it [00:00, 22945.28it/s]
0it [00:00, ?it/s]294it [00:00, 23500.64it/s]
0it [00:00, ?it/s]294it [00:00, 23459.06it/s]
0it [00:00, ?it/s]294it [00:00, 23373.68it/s]
0it [00:00, ?it/s]294it [00:00, 23286.73it/s]
0it [00:00, ?it/s]294it [00:00, 23271.35it/s]
0it [00:00, ?it/s]294it [00:00, 21508.13it/s]
0it [00:00, ?it/s]294it [00:00, 21798.61it/s]
0it [00:00, ?it/s]294it [00:00, 21922.23it/s]
0it [00:00, ?it/s]294it [00:00, 21726.02it/s]
0it [00:00, ?it/s]294it [00:00, 21468.81it/s]
0it [00:00, ?it/s]294it [00:00, 23455.04it/s]
0it [00:00, ?it/s]294it [00:00, 18231.52it/s]
0it [00:00, ?it/s]294it [00:00, 22352.19it/s]
0it [00:00, ?it/s]294it [00:00, 23839.10it/s]
0it [00:00, ?it/s]294it [00:00, 21996.14it/s]
0it [00:00, ?it/s]294it [00:00, 20488.92it/s]
0it [00:00, ?it/s]294it [00:00, 22869.96it/s]
0it [00:00, ?it/s]294it [00:00, 21418.84it/s]
0it [00:00, ?it/s]294it [00:00, 21212.14it/s]
0it [00:00, ?it/s]294it [00:00, 21695.44it/s]
0it [00:00, ?it/s]294it [00:00, 23743.63it/s]
0it [00:00, ?it/s]294it [00:00, 23551.35it/s]
0it [00:00, ?it/s]294it [00:00, 23310.94it/s]
0it [00:00, ?it/s]294it [00:00, 23476.03it/s]
0it [00:00, ?it/s]294it [00:00, 23680.25it/s]
0it [00:00, ?it/s]294it [00:00, 23334.32it/s]
0it [00:00, ?it/s]294it [00:00, 23482.73it/s]
0it [00:00, ?it/s]294it [00:00, 23252.92it/s]
0it [00:00, ?it/s]294it [00:00, 22032.69it/s]
0it [00:00, ?it/s]294it [00:00, 21996.92it/s]
0it [00:00, ?it/s]294it [00:00, 21935.10it/s]
0it [00:00, ?it/s]294it [00:00, 21649.35it/s]
0it [00:00, ?it/s]294it [00:00, 21610.65it/s]
0it [00:00, ?it/s]294it [00:00, 22899.26it/s]
0it [00:00, ?it/s]294it [00:00, 23278.81it/s]
0it [00:00, ?it/s]294it [00:00, 22196.08it/s]
0it [00:00, ?it/s]294it [00:00, 23903.80it/s]
0it [00:00, ?it/s]294it [00:00, 21710.34it/s]
0it [00:00, ?it/s]294it [00:00, 21801.69it/s]
0it [00:00, ?it/s]294it [00:00, 21417.72it/s]
0it [00:00, ?it/s]294it [00:00, 21919.89it/s]
0it [00:00, ?it/s]294it [00:00, 21949.93it/s]
0it [00:00, ?it/s]294it [00:00, 21634.16it/s]
0it [00:00, ?it/s]294it [00:00, 22067.38it/s]
0it [00:00, ?it/s]294it [00:00, 21765.52it/s]
0it [00:00, ?it/s]294it [00:00, 22676.50it/s]
0it [00:00, ?it/s]294it [00:00, 22063.83it/s]
0it [00:00, ?it/s]294it [00:00, 21889.54it/s]
0it [00:00, ?it/s]294it [00:00, 21810.17it/s]
0it [00:00, ?it/s]294it [00:00, 22164.96it/s]
0it [00:00, ?it/s]294it [00:00, 22000.85it/s]
0it [00:00, ?it/s]294it [00:00, 22114.48it/s]
0it [00:00, ?it/s]294it [00:00, 23901.95it/s]
0it [00:00, ?it/s]294it [00:00, 23852.94it/s]
0it [00:00, ?it/s]294it [00:00, 23080.57it/s]
0it [00:00, ?it/s]294it [00:00, 22611.63it/s]
0it [00:00, ?it/s]294it [00:00, 23065.46it/s]
0it [00:00, ?it/s]294it [00:00, 22630.31it/s]
0it [00:00, ?it/s]294it [00:00, 21441.56it/s]
0it [00:00, ?it/s]294it [00:00, 21567.19it/s]
0it [00:00, ?it/s]294it [00:00, 22250.15it/s]
0it [00:00, ?it/s]294it [00:00, 21030.89it/s]
0it [00:00, ?it/s]294it [00:00, 21750.54it/s]
0it [00:00, ?it/s]294it [00:00, 21819.05it/s]
0it [00:00, ?it/s]294it [00:00, 23622.19it/s]
0it [00:00, ?it/s]294it [00:00, 22878.02it/s]
0it [00:00, ?it/s]294it [00:00, 21426.65it/s]
{'x': 700700.0,
'y': 5719700.0,
'live': True,
'weight': 1,
'cc_seg_density_200': 857.3270263671875,
'cc_seg_density_400': 3042.26025390625,
'cc_seg_density_800': 10088.9873046875,
'cc_seg_density_1600': 13137.7890625,
'cc_seg_harmonic_200': 17.577617645263672,
'cc_seg_harmonic_400': 24.706350326538086,
'cc_seg_harmonic_800': 36.822689056396484,
'cc_seg_harmonic_1600': 40.173213958740234,
'cc_seg_beta_200': 159.83761596679688,
'cc_seg_beta_400': 421.98443603515625,
'cc_seg_beta_800': 1365.0115966796875,
'cc_seg_beta_1600': 3582.89111328125,
'cc_seg_betweenness_200': 590.8660278320312,
'cc_seg_betweenness_400': 2805.018310546875,
'cc_seg_betweenness_800': 23575.0234375,
'cc_seg_betweenness_1600': 159337.734375,
'cc_hill_q0_200_nw': 4.0,
'cc_hill_q0_200_wt': 0.2142721265554428,
'cc_hill_q1_200_nw': 3.789292097091675,
'cc_hill_q1_200_wt': 0.20572812855243683,
'cc_hill_q2_200_nw': 3.571428060531616,
'cc_hill_q2_200_wt': 0.19956745207309723,
'cc_hill_q0_400_nw': 9.0,
'cc_hill_q0_400_wt': 1.1907039880752563,
'cc_hill_q1_400_nw': 8.171717643737793,
'cc_hill_q1_400_wt': 1.0840710401535034,
'cc_hill_q2_400_nw': 7.529411792755127,
'cc_hill_q2_400_wt': 1.0111380815505981,
'cc_hill_q0_800_nw': 9.0,
'cc_hill_q0_800_wt': 3.0550568103790283,
'cc_hill_q1_800_nw': 8.061278343200684,
'cc_hill_q1_800_wt': 2.7106287479400635,
'cc_hill_q2_800_nw': 7.44961404800415,
'cc_hill_q2_800_wt': 2.509385108947754,
'cc_hill_q0_1600_nw': 10.0,
'cc_hill_q0_1600_wt': 5.220044136047363,
'cc_hill_q1_1600_nw': 9.228510856628418,
'cc_hill_q1_1600_wt': 4.775951862335205,
'cc_hill_q2_1600_nw': 8.672131538391113,
'cc_hill_q2_1600_wt': 4.467940807342529,
'cc_a_200_nw': 0.0,
'cc_a_200_wt': 0.0,
'cc_a_400_nw': 2.0,
'cc_a_400_wt': 0.050510115921497345,
'cc_a_800_nw': 2.0,
'cc_a_800_wt': 0.3162217140197754,
'cc_a_1600_nw': 5.0,
'cc_a_1600_wt': 1.0843466520309448,
'cc_a_nearest_max_1600': 349.61199951171875,
'cc_b_200_nw': 1.0,
'cc_b_200_wt': 0.01839187555015087,
'cc_b_400_nw': 1.0,
'cc_b_400_wt': 0.13561664521694183,
'cc_b_800_nw': 2.0,
'cc_b_800_wt': 0.46969375014305115,
'cc_b_1600_nw': 2.0,
'cc_b_1600_wt': 0.9253296852111816,
'cc_b_nearest_max_1600': 199.7923126220703,
'cc_c_200_nw': 0.0,
'cc_c_200_wt': 0.0,
'cc_c_400_nw': 1.0,
'cc_c_400_wt': 0.1017569750547409,
'cc_c_800_nw': 4.0,
'cc_c_800_wt': 0.39100760221481323,
'cc_c_1600_nw': 5.0,
'cc_c_1600_wt': 1.1247146129608154,
'cc_c_nearest_max_1600': 228.5167999267578,
'cc_mock_numerical_1_sum_800_nw': 1170.739013671875,
'cc_mock_numerical_1_sum_800_wt': 211.98062133789062,
'cc_mock_numerical_1_mean_800_nw': 41.81210708618164,
'cc_mock_numerical_1_mean_800_wt': 51.426265716552734,
'cc_mock_numerical_1_count_800_nw': 28.0,
'cc_mock_numerical_1_count_800_wt': 4.122030258178711,
'cc_mock_numerical_1_var_800_nw': 766.1060791015625,
'cc_mock_numerical_1_var_800_wt': 5831.85107421875,
'cc_mock_numerical_1_max_800': 99.43800354003906,
'cc_mock_numerical_1_min_800': 0.4690000116825104,
'cc_mock_numerical_1_sum_1600_nw': 2528.3251953125,
'cc_mock_numerical_1_sum_1600_wt': 541.5324096679688,
'cc_mock_numerical_1_mean_1600_nw': 51.598472595214844,
'cc_mock_numerical_1_mean_1600_wt': 48.469398498535156,
'cc_mock_numerical_1_count_1600_nw': 49.0,
'cc_mock_numerical_1_count_1600_wt': 11.172666549682617,
'cc_mock_numerical_1_var_1600_nw': 986.6458740234375,
'cc_mock_numerical_1_var_1600_wt': 4370.0771484375,
'cc_mock_numerical_1_max_1600': 99.43800354003906,
'cc_mock_numerical_1_min_1600': 0.4690000116825104}