Angular distance network centrality

Calculate angular (geometric or “simplest”) distance centralities from a geopandas GeoDataFrame.

import geopandas as gpd
import matplotlib.pyplot as plt
from cityseer.metrics import networks
from cityseer.tools import graphs, io

Prepare the network as shown in other examples. Working with the dual graph is recommended.

streets_gpd = gpd.read_file("data/madrid_streets/street_network.gpkg")
streets_gpd = streets_gpd.explode(reset_index=True)
G = io.nx_from_generic_geopandas(streets_gpd)
G_dual = graphs.nx_to_dual(G)
INFO:cityseer.tools.graphs:Merging parallel edges within buffer of 1.
INFO:cityseer.tools.graphs:Converting graph to dual.
INFO:cityseer.tools.graphs:Preparing dual nodes
INFO:cityseer.tools.graphs:Preparing dual edges (splitting and welding geoms)

Use network_structure_from_nx from the cityseer package’s io module to prepare the GeoDataFrames and NetworkStructure.

# prepare the data structures
nodes_gdf, _edges_gdf, network_structure = io.network_structure_from_nx(
    G_dual,
)
INFO:cityseer.tools.io:Preparing node and edge arrays from networkX graph.
INFO:cityseer.graph:Edge R-tree built successfully with 104026 items.

Use the node_centrality_simplest function from the cityseer package’s networks module to calculate shortest angular (geometric or “simplest”) distance centralities. The function requires a NetworkStructure and nodes GeoDataFrame prepared with the network_structure_from_nx function in the previous step.

The function can calculate centralities for numerous distances at once via the distances parameter, which accepts a list of distances.

The function returns the nodes GeoDataFrame with the outputs of the centralities added as columns. The columns are named cc_{centrality}_{distance}_ang. Standard geopandas functionality can be used to explore, visualise, or save the results. See the documentation for more information on the available centrality formulations.

distances = [500, 2000]
nodes_gdf = networks.node_centrality_simplest(
    network_structure=network_structure,
    nodes_gdf=nodes_gdf,
    distances=distances,
)
nodes_gdf.head()
INFO:cityseer.metrics.networks:Computing simplest path node centrality.
INFO:cityseer.config:Metrics computed for:
INFO:cityseer.config:Distance: 500m, Beta: 0.008, Walking Time: 6.25 minutes.
INFO:cityseer.config:Distance: 2000m, Beta: 0.002, Walking Time: 25.0 minutes.
ns_node_idx x y live weight primal_edge primal_edge_node_a primal_edge_node_b primal_edge_idx dual_node cc_density_500_ang cc_density_2000_ang cc_harmonic_500_ang cc_harmonic_2000_ang cc_hillier_500_ang cc_hillier_2000_ang cc_farness_500_ang cc_farness_2000_ang cc_betweenness_500_ang cc_betweenness_2000_ang
x454839.5-y4476885.3_x454855.9-y4476818.6_k0 0 454848.067543 4.476852e+06 True 1 LINESTRING (454855.9 4476818.6, 454849.1 44768... x454855.9-y4476818.6 x454839.5-y4476885.3 0 POINT (454848.067543 4476852.042507) 30.0 124.0 12.848804 26.465605 10.168567 18.186932 88.508049 845.442261 0.0 0.0
x454833.6-y4476910.5_x454839.5-y4476885.3_k0 1 454836.577015 4.476898e+06 True 1 LINESTRING (454839.5 4476885.3, 454838 4476891... x454839.5-y4476885.3 x454833.6-y4476910.5 0 POINT (454836.577015 4476897.9067) 36.0 127.0 14.853752 28.316143 10.232138 18.836437 126.659744 856.265991 136.0 968.0
x454839.5-y4476885.3_x454877.1-y4476893.6_k0 2 454858.300000 4.476889e+06 True 1 LINESTRING (454839.5 4476885.3, 454877.1 44768... x454839.5-y4476885.3 x454877.1-y4476893.6 0 POINT (454858.3 4476889.45) 33.0 125.0 12.366441 24.028734 9.009537 16.524494 120.871918 945.566040 106.0 752.0
x454823.1-y4476952.1_x454833.6-y4476910.5_k0 3 454828.362585 4.476931e+06 True 1 LINESTRING (454833.6 4476910.5, 454830.4 44769... x454833.6-y4476910.5 x454823.1-y4476952.1 0 POINT (454828.362585 4476931.303206) 36.0 124.0 15.039588 28.382860 10.302912 18.803555 125.789688 817.717712 165.0 1180.0
x454758.1-y4476894.6_x454833.6-y4476910.5_k0 4 454795.845199 4.476903e+06 True 1 LINESTRING (454758.1 4476894.6, 454769.8 44768... x454833.6-y4476910.5 x454758.1-y4476894.6 0 POINT (454795.845199 4476902.571916) 33.0 125.0 9.605127 21.297651 8.002337 16.290869 136.085236 959.126282 0.0 0.0
nodes_gdf.columns
Index(['ns_node_idx', 'x', 'y', 'live', 'weight', 'primal_edge',
       'primal_edge_node_a', 'primal_edge_node_b', 'primal_edge_idx',
       'dual_node', 'cc_density_500_ang', 'cc_density_2000_ang',
       'cc_harmonic_500_ang', 'cc_harmonic_2000_ang', 'cc_hillier_500_ang',
       'cc_hillier_2000_ang', 'cc_farness_500_ang', 'cc_farness_2000_ang',
       'cc_betweenness_500_ang', 'cc_betweenness_2000_ang'],
      dtype='object')
nodes_gdf["cc_betweenness_2000_ang"].describe()
count     47129.000000
mean       8083.850098
std       15415.607422
min           0.000000
25%         374.000000
50%        2210.000000
75%        8528.000000
max      227236.000000
Name: cc_betweenness_2000_ang, dtype: float64
fig, ax = plt.subplots(1, 1, figsize=(8, 6), facecolor="#1d1d1d")
nodes_gdf.plot(
    column="cc_harmonic_500_ang",
    cmap="magma",
    legend=False,
    ax=ax,
)
ax.set_xlim(438500, 438500 + 3500)
ax.set_ylim(4472500, 4472500 + 3500)
ax.axis(False)
(np.float64(438500.0),
 np.float64(442000.0),
 np.float64(4472500.0),
 np.float64(4476000.0))

fig, ax = plt.subplots(1, 1, figsize=(8, 6), facecolor="#1d1d1d")
nodes_gdf.plot(
    column="cc_betweenness_2000_ang",
    cmap="magma",
    legend=False,
    ax=ax,
)
ax.set_xlim(438500, 438500 + 3500)
ax.set_ylim(4472500, 4472500 + 3500)
ax.axis(False)
(np.float64(438500.0),
 np.float64(442000.0),
 np.float64(4472500.0),
 np.float64(4476000.0))

Alternatively, you can define the distance thresholds using a list of minutes instead.

nodes_gdf = networks.node_centrality_simplest(
    network_structure=network_structure,
    nodes_gdf=nodes_gdf,
    minutes=[15],
)
INFO:cityseer.metrics.networks:Computing simplest path node centrality.
INFO:cityseer.config:Metrics computed for:
INFO:cityseer.config:Distance: 1200m, Beta: 0.00333, Walking Time: 15.0 minutes.

The function will map the minutes values into the equivalent distances, which are reported in the logged output.

nodes_gdf.columns
Index(['ns_node_idx', 'x', 'y', 'live', 'weight', 'primal_edge',
       'primal_edge_node_a', 'primal_edge_node_b', 'primal_edge_idx',
       'dual_node', 'cc_density_500_ang', 'cc_density_2000_ang',
       'cc_harmonic_500_ang', 'cc_harmonic_2000_ang', 'cc_hillier_500_ang',
       'cc_hillier_2000_ang', 'cc_farness_500_ang', 'cc_farness_2000_ang',
       'cc_betweenness_500_ang', 'cc_betweenness_2000_ang',
       'cc_density_1200_ang', 'cc_harmonic_1200_ang', 'cc_hillier_1200_ang',
       'cc_farness_1200_ang', 'cc_betweenness_1200_ang'],
      dtype='object')

As per the function logging outputs, 15 minutes has been mapped to 1200m at default speed_m_s, so the corresponding outputs can be visualised using the 1200m columns. Use the configurable speed_m_s parameter to set a custom metres per second walking speed.

fig, ax = plt.subplots(1, 1, figsize=(8, 6), facecolor="#1d1d1d")
nodes_gdf.plot(
    column="cc_harmonic_1200_ang",
    cmap="magma",
    legend=False,
    ax=ax,
)
ax.set_xlim(438500, 438500 + 3500)
ax.set_ylim(4472500, 4472500 + 3500)
ax.axis(False)
(np.float64(438500.0),
 np.float64(442000.0),
 np.float64(4472500.0),
 np.float64(4476000.0))