Metric distance network centrality

Calculate metric distance centralities from a geopandas GeoDataFrame.

import geopandas as gpd
import matplotlib.pyplot as plt
from cityseer.metrics import networks
from cityseer.tools import graphs, io

Prepare the network as shown in other examples. Working with the dual graph is recommended.

streets_gpd = gpd.read_file("data/madrid_streets/street_network.gpkg")
streets_gpd = streets_gpd.explode(reset_index=True)
G = io.nx_from_generic_geopandas(streets_gpd)
G_dual = graphs.nx_to_dual(G)
INFO:cityseer.tools.graphs:Merging parallel edges within buffer of 1.
INFO:cityseer.tools.graphs:Converting graph to dual.
INFO:cityseer.tools.graphs:Preparing dual nodes
INFO:cityseer.tools.graphs:Preparing dual edges (splitting and welding geoms)

Use network_structure_from_nx from the cityseer package’s io module to prepare the GeoDataFrames and NetworkStructure.

# prepare the data structures
nodes_gdf, _edges_gdf, network_structure = io.network_structure_from_nx(
    G_dual,
)
INFO:cityseer.tools.io:Preparing node and edge arrays from networkX graph.
INFO:cityseer.graph:Edge R-tree built successfully with 104026 items.

Use the node_centrality_shortest function from the cityseer package’s networks module to calculate shortest metric distance centralities. The function requires a NetworkStructure and nodes GeoDataFrame prepared with the network_structure_from_nx function in the previous step.

The function can calculate centralities for numerous distances at once via the distances parameter, which accepts a list of distances.

The function returns the nodes GeoDataFrame with the outputs of the centralities added as columns. The columns are named cc_{centrality}_{distance}. Standard geopandas functionality can be used to explore, visualise, or save the results. See the documentation for more information on the available centrality formulations.

distances = [500, 2000]
nodes_gdf = networks.node_centrality_shortest(
    network_structure=network_structure,
    nodes_gdf=nodes_gdf,
    distances=distances,
)
nodes_gdf.head()
INFO:cityseer.metrics.networks:Computing shortest path node centrality.
INFO:cityseer.config:Metrics computed for:
INFO:cityseer.config:Distance: 500m, Beta: 0.008, Walking Time: 6.25 minutes.
INFO:cityseer.config:Distance: 2000m, Beta: 0.002, Walking Time: 25.0 minutes.
ns_node_idx x y live weight primal_edge primal_edge_node_a primal_edge_node_b primal_edge_idx dual_node ... cc_farness_500 cc_farness_2000 cc_harmonic_500 cc_harmonic_2000 cc_hillier_500 cc_hillier_2000 cc_betweenness_500 cc_betweenness_2000 cc_betweenness_beta_500 cc_betweenness_beta_2000
x454839.5-y4476885.3_x454855.9-y4476818.6_k0 0 454848.067543 4.476852e+06 True 1 LINESTRING (454855.9 4476818.6, 454849.1 44768... x454855.9-y4476818.6 x454839.5-y4476885.3 0 POINT (454848.067543 4476852.042507) ... 7418.207031 163780.625000 0.199088 0.315512 0.121323 0.148589 0.0 0.0 0.000000 0.000000
x454833.6-y4476910.5_x454839.5-y4476885.3_k0 1 454836.577015 4.476898e+06 True 1 LINESTRING (454839.5 4476885.3, 454838 4476891... x454839.5-y4476885.3 x454833.6-y4476910.5 0 POINT (454836.577015 4476897.9067) ... 10061.338867 162550.625000 0.294068 0.401464 0.143520 0.155527 127.0 1032.0 18.257139 174.897049
x454839.5-y4476885.3_x454877.1-y4476893.6_k0 2 454858.300000 4.476889e+06 True 1 LINESTRING (454839.5 4476885.3, 454877.1 44768... x454839.5-y4476885.3 x454877.1-y4476893.6 0 POINT (454858.3 4476889.45) ... 8638.165039 167096.218750 0.313121 0.424865 0.133825 0.151296 99.0 753.0 18.619455 135.658371
x454823.1-y4476952.1_x454833.6-y4476910.5_k0 3 454828.362585 4.476931e+06 True 1 LINESTRING (454833.6 4476910.5, 454830.4 44769... x454833.6-y4476910.5 x454823.1-y4476952.1 0 POINT (454828.362585 4476931.303206) ... 10452.838867 161802.000000 0.281164 0.389349 0.153068 0.160202 158.0 1308.0 17.099850 212.337875
x454758.1-y4476894.6_x454833.6-y4476910.5_k0 4 454795.845199 4.476903e+06 True 1 LINESTRING (454758.1 4476894.6, 454769.8 44768... x454833.6-y4476910.5 x454758.1-y4476894.6 0 POINT (454795.845199 4476902.571916) ... 9720.206055 166860.140625 0.197214 0.307718 0.126026 0.151510 0.0 0.0 0.000000 0.000000

5 rows × 26 columns

nodes_gdf.columns
Index(['ns_node_idx', 'x', 'y', 'live', 'weight', 'primal_edge',
       'primal_edge_node_a', 'primal_edge_node_b', 'primal_edge_idx',
       'dual_node', 'cc_beta_500', 'cc_beta_2000', 'cc_cycles_500',
       'cc_cycles_2000', 'cc_density_500', 'cc_density_2000', 'cc_farness_500',
       'cc_farness_2000', 'cc_harmonic_500', 'cc_harmonic_2000',
       'cc_hillier_500', 'cc_hillier_2000', 'cc_betweenness_500',
       'cc_betweenness_2000', 'cc_betweenness_beta_500',
       'cc_betweenness_beta_2000'],
      dtype='object')
nodes_gdf["cc_betweenness_2000"].describe()
count     47129.000000
mean       9697.500000
std       14681.911133
min           0.000000
25%         701.000000
50%        3823.000000
75%       12501.000000
max      237420.000000
Name: cc_betweenness_2000, dtype: float64
fig, ax = plt.subplots(1, 1, figsize=(8, 6), facecolor="#1d1d1d")
nodes_gdf.plot(
    column="cc_harmonic_500",
    cmap="magma",
    legend=False,
    ax=ax,
)
ax.set_xlim(438500, 438500 + 3500)
ax.set_ylim(4472500, 4472500 + 3500)
ax.axis(False)
(np.float64(438500.0),
 np.float64(442000.0),
 np.float64(4472500.0),
 np.float64(4476000.0))

fig, ax = plt.subplots(1, 1, figsize=(8, 6), facecolor="#1d1d1d")
nodes_gdf.plot(
    column="cc_betweenness_2000",
    cmap="magma",
    legend=False,
    ax=ax,
)
ax.set_xlim(438500, 438500 + 3500)
ax.set_ylim(4472500, 4472500 + 3500)
ax.axis(False)
(np.float64(438500.0),
 np.float64(442000.0),
 np.float64(4472500.0),
 np.float64(4476000.0))

Alternatively, you can define the distance thresholds using a list of minutes instead.

nodes_gdf = networks.node_centrality_shortest(
    network_structure=network_structure,
    nodes_gdf=nodes_gdf,
    minutes=[15],
)
INFO:cityseer.metrics.networks:Computing shortest path node centrality.
INFO:cityseer.config:Metrics computed for:
INFO:cityseer.config:Distance: 1200m, Beta: 0.00333, Walking Time: 15.0 minutes.

The function will map the minutes values into the equivalent distances, which are reported in the logged output.

nodes_gdf.columns
Index(['ns_node_idx', 'x', 'y', 'live', 'weight', 'primal_edge',
       'primal_edge_node_a', 'primal_edge_node_b', 'primal_edge_idx',
       'dual_node', 'cc_beta_500', 'cc_beta_2000', 'cc_cycles_500',
       'cc_cycles_2000', 'cc_density_500', 'cc_density_2000', 'cc_farness_500',
       'cc_farness_2000', 'cc_harmonic_500', 'cc_harmonic_2000',
       'cc_hillier_500', 'cc_hillier_2000', 'cc_betweenness_500',
       'cc_betweenness_2000', 'cc_betweenness_beta_500',
       'cc_betweenness_beta_2000', 'cc_beta_1200', 'cc_cycles_1200',
       'cc_density_1200', 'cc_farness_1200', 'cc_harmonic_1200',
       'cc_hillier_1200', 'cc_betweenness_1200', 'cc_betweenness_beta_1200'],
      dtype='object')

As per the function logging outputs, 15 minutes has been mapped to 1200m at default speed_m_s, so the corresponding outputs can be visualised using the 1200m columns. Use the configurable speed_m_s parameter to set a custom metres per second walking speed.

fig, ax = plt.subplots(1, 1, figsize=(8, 6), facecolor="#1d1d1d")
nodes_gdf.plot(
    column="cc_harmonic_1200",
    cmap="magma",
    legend=False,
    ax=ax,
)
ax.set_xlim(438500, 438500 + 3500)
ax.set_ylim(4472500, 4472500 + 3500)
ax.axis(False)
(np.float64(438500.0),
 np.float64(442000.0),
 np.float64(4472500.0),
 np.float64(4476000.0))

For spatial-impedance weighted forms of centralities (beta variants), you can specify the beta parameter explicitly. These will otherwise be extrapolated automatically from the distances or minutes parameters. See the documentation for more information on how spatial impedances are converted to distance thresholds.

nodes_gdf = networks.node_centrality_shortest(
    network_structure=network_structure,
    nodes_gdf=nodes_gdf,
    betas=[0.01],
)
INFO:cityseer.metrics.networks:Computing shortest path node centrality.
INFO:cityseer.config:Metrics computed for:
INFO:cityseer.config:Distance: 400m, Beta: 0.01, Walking Time: 5.0 minutes.
nodes_gdf.columns
Index(['ns_node_idx', 'x', 'y', 'live', 'weight', 'primal_edge',
       'primal_edge_node_a', 'primal_edge_node_b', 'primal_edge_idx',
       'dual_node', 'cc_beta_500', 'cc_beta_2000', 'cc_cycles_500',
       'cc_cycles_2000', 'cc_density_500', 'cc_density_2000', 'cc_farness_500',
       'cc_farness_2000', 'cc_harmonic_500', 'cc_harmonic_2000',
       'cc_hillier_500', 'cc_hillier_2000', 'cc_betweenness_500',
       'cc_betweenness_2000', 'cc_betweenness_beta_500',
       'cc_betweenness_beta_2000', 'cc_beta_1200', 'cc_cycles_1200',
       'cc_density_1200', 'cc_farness_1200', 'cc_harmonic_1200',
       'cc_hillier_1200', 'cc_betweenness_1200', 'cc_betweenness_beta_1200',
       'cc_beta_400', 'cc_cycles_400', 'cc_density_400', 'cc_farness_400',
       'cc_harmonic_400', 'cc_hillier_400', 'cc_betweenness_400',
       'cc_betweenness_beta_400'],
      dtype='object')
fig, ax = plt.subplots(1, 1, figsize=(8, 6), facecolor="#1d1d1d")
nodes_gdf.plot(
    column="cc_beta_400",
    cmap="magma",
    legend=False,
    ax=ax,
)
ax.set_xlim(438500, 438500 + 3500)
ax.set_ylim(4472500, 4472500 + 3500)
ax.axis(False)
(np.float64(438500.0),
 np.float64(442000.0),
 np.float64(4472500.0),
 np.float64(4476000.0))